ACKNOWLEDGEMENTS

The Ministry of Primary and Secondary Education wishes to acknowledge the following for their valued contributions in the development of this syllabus:

- The National Computer Science Panel comprising of
 - Representatives of Computer Science Teachers
 - The Zimbabwe School Examination Council (ZIMSEC)
 - Representatives from Teachers' and Technical Colleges
 - Representatives from Universities

- United Nations Children's Fund (UNICEF)
- United Nations Educational, Scientific and Cultural Organization (UNESCO)
CONTENTS

ACKNOWLEDGEMENTS ...i

CONTENTS ...ii

1.0 PREAMBLE ..5

2.0 PRESENTATION OF SYLLABUS ...5

3.0 AIMS ..5

4.0 SYLLABUS OBJECTIVES ...5

5.0 METHODOLOGY AND TIME ALLOCATION ..6

6.0 TOPICS ...6

7.0 SCOPE AND SEQUENCE CHART ...7

8.0 COMPETENCY MATRIX ...9

FORM 1 ...9

FORM 2 ...13

FORM 3 ...17

FORM 4 ...22

9.0 ASSESSMENT ..26

10.0 GLOSSARY/ APPENDICES ..30
1.0 PREAMBLE

1.1 Introduction

This syllabus is designed to cover the first four years of Secondary Education in Computer Science, which provides essential skills in problem solving. It prepares learners for further education or branching to more specific and specialised fields of computing. Learners will be able to use the acquired skills to solve day to day life and work-related problems in the globally competitive information age.

1.2 Rationale

The learning area provides a foundation for further studies in specialized areas of computing and equips learners with computer related skills for self-sustenance. Computer Science promotes innovative thinking for socio-economic development and equips learners with knowledge of the evolving nature of technology, while applying research skills in Computer based projects.

1.3 Summary of Content (Knowledge, Skills and Attitudes)

Computer Science is a learning area which among others encompasses Computer Applications, Network technologies, Technopreneurship, Computer Architecture, System Development, Security and ethical principles that meet local and global standards.

1.4 Assumptions

It is assumed that learners:

- have had some exposure to ICT tools
- have acquired basic computer literacy skills
- have completed the Junior ICT learning area

1.5 Cross-cutting themes

The teaching and learning of Computer Science should integrate the following cross cutting themes:

- Financial literacy
- Collaboration

- HIV and AIDS
- Guidance and counseling
- Heritage studies
- Human Rights and Responsibilities
- Child Protection
- Gender
- Environmental issues
- Disaster Risk management

2.0 PRESENTATION OF SYLLABUS

The Computer Science syllabus is presented as one document for Forms 1 to 4.

3.0 AIMS

The syllabus aims to enable learners to:

3.1 appreciate the organisation of computer systems
3.2 demonstrate an understanding of the issues surrounding the development and use of information communication technologies (ICTs)
3.3 develop programming and analysis skills through system development.
3.4 foster a culture of innovative thinking for socio-economic development

4.0 SYLLABUS OBJECTIVES

Learners should be able to:

4.1 describe a range of information processing systems
4.2 explain the effects of introducing information processing systems both to individuals and to the organizations
4.3 explain the functions of individual hardware and software components of ICT systems and their interrelationship
4.4 use computers sensibly to generate, implement and document solutions appropriately (3.4)
4.5 demonstrate the techniques used to solve real life problems (3.5)
4.6 analyse ICT applications in terms of data flow and system requirements (3.4)
4.7 analyse, evaluate, make reasoned judgments and present conclusions (3.5)
4.8 demonstrate proficiency in the creation, design and implementation of computer solutions using programming packages (3.6)
4.9 conduct research using the internet (3.3) (3.
4.10 develop an understanding of the component parts of computer systems and how they inter-relate including software, data, hardware, communications and people (3.1)

4.11 analyse organize, interpret and present information in a variety of forms (3.5)

5.0 METHODOLOGY AND TIME ALLOCATION

Methodology

The teaching and learning of Computer Science is based on a learner-centred approach. The following methods are recommended:

• Problem solving
• E-learning
• Multi-media
• Simulation and modeling
• Discovery
• Experimentation
• Design based learning
• Project-based learning
• Question and answer
• Demonstrations
• Discussion
• Educational Tours
• Research and Presentations
• Expert guest presentations

Time Allocation

The subject should be allocated at least 6 periods of 35 – 40 minutes per week. At least 2 of the periods should be devoted to theory and 4 of the periods to practical work.

6.0 TOPICS

The syllabus consists of the following topics:

6.1 Hardware and Software
6.2 Application of Computer Science
6.3 Data Representation
6.4 Communication Networks and Internet technologies
6.5 Security and Ethics
6.6 Systems Analysis and Design
6.7 Algorithm Design and Problem Solving
7.0 SCOPE AND SEQUENCE CHART

<table>
<thead>
<tr>
<th>TOPIC</th>
<th>FORM 1</th>
<th>FORM 2</th>
<th>FORM 3</th>
<th>FORM 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardware and Software</td>
<td>• Input devices</td>
<td>• Application software</td>
<td>• Hardware devices</td>
<td>• Hardware and software maintenance</td>
</tr>
<tr>
<td></td>
<td>• Output devices</td>
<td>• System software</td>
<td>• Operating systems</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Storage devices</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Processing devices</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Software concepts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Application of Computer Science</td>
<td>• Agriculture</td>
<td>• Agriculture</td>
<td>• Agriculture</td>
<td>• Agriculture</td>
</tr>
<tr>
<td></td>
<td>• Banking systems</td>
<td>• Transport management</td>
<td>• Computer aided manufacturing</td>
<td>• Ambient systems</td>
</tr>
<tr>
<td></td>
<td>• Education</td>
<td>• Health</td>
<td>• Intelligent systems</td>
<td>• Geographic Information System</td>
</tr>
<tr>
<td></td>
<td>• Social networks</td>
<td>• Environmental management</td>
<td>• Wildlife management</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Research and development</td>
<td>• Robotics</td>
<td>• Mining</td>
<td></td>
</tr>
<tr>
<td>Data Representation</td>
<td>• Binary Number System</td>
<td>• Conversion</td>
<td>• Units of storage</td>
<td>• Logic gates</td>
</tr>
<tr>
<td></td>
<td>• Data representation using binary</td>
<td>• denary to binary</td>
<td>• Number bases</td>
<td>• Truth tables</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• binary to denary</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Binary Operations</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• addition and subtraction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Communication Networks and Internet Technologies</td>
<td>• Networking Concepts</td>
<td>• Data transmission modes</td>
<td>• Mobile technology</td>
<td>• Network protocols</td>
</tr>
<tr>
<td></td>
<td>• Types of networks</td>
<td>• Data transmission media</td>
<td>• Cloud Services</td>
<td>• Networking Devices</td>
</tr>
<tr>
<td></td>
<td>• Network Topologies</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Internet services</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Security and Ethics (Unhu/Ubuntu/Vumunhu)</td>
<td>• Cyber-wellness (Unhu/Ubuntu/Vumunhu)</td>
<td>• Computer Crime</td>
<td>• Privacy and Data Integrity</td>
<td>• Data backup</td>
</tr>
<tr>
<td></td>
<td>• Copyright issues</td>
<td>• Data protection measures</td>
<td>• System security</td>
<td>• Disaster recovery plan</td>
</tr>
<tr>
<td></td>
<td>• Plagiarism and piracy</td>
<td>• Computer Ethics</td>
<td>• Cybercrime</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TOPIC</th>
<th>FORM 1</th>
<th>FORM 2</th>
<th>FORM 3</th>
<th>FORM 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Analysis and Design</td>
<td>• Systems development life cycle</td>
<td>• Feasibility study</td>
<td>• Systems Analysis</td>
<td>• Documentation</td>
</tr>
<tr>
<td></td>
<td>• Problem identification</td>
<td></td>
<td>• Systems Design</td>
<td>• User Training</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Development & Testing</td>
<td>• Implementation, Evaluation and Maintenance</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Algorithm Design and Problem-solving</td>
<td>• Introduction to Algorithm Tools</td>
<td>• Algorithm Tools</td>
<td>• Algorithm Tools</td>
<td>• Algorithm Design</td>
</tr>
<tr>
<td></td>
<td>• Sequence Construct</td>
<td></td>
<td>• Interpreting and Testing Algorithms</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Programming</td>
<td>• Programming Concepts</td>
<td>• Programming Concepts</td>
<td>• Interface design</td>
<td>• Coding programs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Functions</td>
<td>• Visual Programming</td>
<td>• Testing and Debugging</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Testing and Debugging</td>
<td>• Testing and Debugging</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Interface design</td>
<td>• Errors</td>
<td></td>
</tr>
<tr>
<td>Databases</td>
<td>• Database Creation</td>
<td>• Database objects and views</td>
<td>• Database objects and views</td>
<td>• Advanced Queries</td>
</tr>
<tr>
<td></td>
<td>• File structure elements</td>
<td>• Data manipulation methods</td>
<td>• External data sources</td>
<td>• Database connection</td>
</tr>
<tr>
<td></td>
<td>• Database objects and views</td>
<td>• Data analysis</td>
<td>• Database security</td>
<td>• Database security</td>
</tr>
<tr>
<td>Web design</td>
<td>• Web page templates</td>
<td>• Content management systems (CMS) Web site templates</td>
<td>• CMS</td>
<td>• Web development</td>
</tr>
<tr>
<td></td>
<td>• Web content development</td>
<td>• Web Content Development</td>
<td>• Graphic design</td>
<td>• Web Security</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Testing and Debugging</td>
<td>• Ads</td>
<td>• Testing and Debugging</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Plugins and Extensions</td>
<td>• Web Security</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Plugins/Extensions</td>
<td></td>
</tr>
<tr>
<td>Technopreneurship</td>
<td>• Elements of Intellectual Capital</td>
<td>• Environmental technopreneurship components</td>
<td>• Laws and policies on technopreneurship</td>
<td>• Finance and funding</td>
</tr>
<tr>
<td></td>
<td>• Business Ethics (Unhu/Ubuntu/Vumunhu)</td>
<td>• Technology innovation and design thinking</td>
<td>• Intellectual Property Rights</td>
<td>• Market research</td>
</tr>
<tr>
<td></td>
<td>• Marketing and business strategies</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
8.0 COMPETENCY MATRIX

FORM 1

<table>
<thead>
<tr>
<th>SKILL/TOPIC</th>
<th>OBJECTIVES</th>
<th>CONTENT (KNOWLEDGE, SKILLS, ATTITUDES)</th>
<th>SUGGESTED LEARNING ACTIVITIES AND NOTES</th>
<th>SUGGESTED LEARNING RESOURCES</th>
</tr>
</thead>
</table>
| **8.1 Hardware and software** | • explain how hardware devices work
• connect hardware devices
• identify types of software | • Input devices
• Output devices
• Storage devices
• Processing devices
• Software concepts | • Identifying hardware devices
• Connecting and troubleshooting hardware devices
• Classifying types of Software
• Conducting educational tours to technology centers | • PCs and Laptops
• Printers
• Multimedia tutorials |
| **8.2 Application of Computer Science** | • describe areas of computer applications | • Agriculture
• Banking systems
• Education
• Social networks
• Research and Development | • Distinguishing different computer applications
• Conducting educational tours to business organisations | • Internet
• Print media
• Multimedia Tutorials |
| **8.3 Data Representation** | • outline the concept of binary number system
• recognize the use and importance of binary numbers in computer system | • Binary Number System
• Data representation using binary | • Using logic circuits to represent binary number system
• Discussing binary number system | • Print Media
• Internet
• Calculators
• Circuit boards |
<table>
<thead>
<tr>
<th>SKILL/TOPIC</th>
<th>OBJECTIVES</th>
<th>CONTENT (KNOWLEDGE, SKILLS, ATTITUDES)</th>
<th>SUGGESTED LEARNING ACTIVITIES AND NOTES</th>
<th>SUGGESTED LEARNING RESOURCES</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.4 Communication Networks and Internet Technologies</td>
<td>Learners should be able to: • outline the concept of computer networks • describe network topologies • use Internet services</td>
<td>• Networking Concepts • Types of Networks - LAN - WAN • Network topologies - Star - Ring - Bus - Mesh • Internet services - Email - E-commerce - E-learning - Social media</td>
<td>• Defining network terms • Illustrating network topologies • Discussing internet services • Utilising Internet services • Conducting educational tours to Internet service providers</td>
<td>• Print media • Multimedia tutorials • Internet</td>
</tr>
<tr>
<td>8.5 Security and Ethics (Unhu/Ubuntu/Vumunhu)</td>
<td>Learners should be able to: • outline the characteristics of cyber culture and its impact • describe the characteristics of safe and unsafe sites • suggest effects of online content and behaviour • explain the importance of copyrights • describe consequences of plagiarism and piracy</td>
<td>• Cyber wellness • Cyber use • Handling online content and behaviour - Online relationship • Copyright issues • Plagiarism and piracy</td>
<td>• Discussing on cyber use and culture • Checking for safety of websites • Blocking unsafe websites • Discussing social impact of online content and behaviour • Carrying out campaigns on online relationships • Discussing the copyrights act • Case studies on copyrights issues • Researching and reporting on consequences of plagiarism and piracy • Using anti-plagiarism software to check for plagiarism in a document</td>
<td>• Internet • Zulu URL Risk Analyzer • Comodo Web Inspector • Multimedia tutorials • Guest experts • Copyright Act (Chapter 26:1) • Anti-plagiarism software such as Turn-it-in, Viper, See Sowles</td>
</tr>
<tr>
<td>SKILL/TOPIC</td>
<td>OBJECTIVES</td>
<td>CONTENT (KNOWLEDGE, SKILLS, ATTITUDES)</td>
<td>SUGGESTED LEARNING ACTIVITIES AND NOTES</td>
<td>SUGGESTED LEARNING RESOURCES</td>
</tr>
<tr>
<td>-------------</td>
<td>------------</td>
<td>---------------------------------------</td>
<td>--</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>8.6 System Analysis and Design</td>
<td>Learners should be able to:</td>
<td>• outline the stages in the systems development life cycle (SDLC) • identify problems of the existing system</td>
<td>• Discussing the stages involved in system development • Stating the activities under problem identification • Conducting case studies on problem identification</td>
<td>• Print media • Multimedia tutorials</td>
</tr>
<tr>
<td>8.7 Algorithm Design and Problem-solving</td>
<td></td>
<td>• define an algorithm • explain the purpose of algorithms • explain sequence construct • apply the sequence algorithm structure</td>
<td>• Giving examples of algorithms • Discussing sequence construct • Interpreting a sequence algorithm • Solving problems using a sequence algorithm structure • Dry running a sequence algorithm</td>
<td>• Multimedia tutorials • Print media puzzles • Puzzles</td>
</tr>
<tr>
<td>8.8 Programming Concepts</td>
<td></td>
<td>• explain the syntax and semantics of the programming language • declare variables and constants • apply operators to solve problems</td>
<td>• Discussing the syntax and semantics of the programming language • Using variables and constants in a program • Solving basic mathematical problems • Testing and debugging</td>
<td>• Case studies • Software development tools such as Python, VB.Net, Java</td>
</tr>
<tr>
<td>SKILL/TOPIC</td>
<td>OBJECTIVES</td>
<td>CONTENT (KNOWLEDGE, SKILLS, ATTITUDES)</td>
<td>SUGGESTED LEARNING ACTIVITIES AND NOTES</td>
<td>SUGGESTED LEARNING RESOURCES</td>
</tr>
<tr>
<td>-----------------</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>---</td>
</tr>
</tbody>
</table>
| **8.9 Databases** | • create a database
• create a file structure
• design forms, reports and queries | • Database creation
• File structure elements
 - Fields
 - Data types
 - Field size
 - Data formats
 - Validation rules and input masks
• Database objects and views
 - Queries
 - Forms
 - Reports | • Developing a database
• Setting fields, data types, formats, field sizes, validation checks and input masks
• Comparing database models
• Performing CRUD (Create, Retrieve, Update, Delete) operations on a table
• Creating forms
• Designing queries
• Running queries
• Designing reports | • Database packages such as Ms Access, MySQL |
| **8.10 Web design** | • navigate a webpage
• customize web pages
• use webpage templates to create web pages
• generate web content | • Webpage elements
• Web page templates
• Web content development | • Navigating a chosen webpage
• Modifying existing web pages
• Designing web pages using templates
• Creating and uploading web page content | • Web development tools such as Joomla, WordPress, Ms Front Page, Notepad++
• Web Browsers such as Firefox |
| **8.11 Techno-preneurship** | • describe the elements of intellectual capital
• explain the attributes of business ethics
• identify the marketing and business strategies elements
• explain the elements of marketing and business | • Elements of Intellectual capital
 - Human capital
 - Organisation capital
 - Social capital
• Business ethics (Unhu/Ubuntu/ Vumunhu)
• Marketing and business strategies
 - e-commerce | • Discussing the elements of intellectual capital
• Discussing the attributes of business ethics
• Creating an ICT based business plan
• Discussing the elements of marketing and business strategies | • Internet
• Print and electronic media such as journals
• Case study
• CZI organization |
FORM 2

<table>
<thead>
<tr>
<th>SKILL/TOPIC</th>
<th>OBJECTIVES Learners should be able to:</th>
<th>CONTENT (KNOWLEDGE, SKILLS, ATTITUDES)</th>
<th>SUGGESTED LEARNING ACTIVITIES AND NOTES</th>
<th>SUGGESTED LEARNING RESOURCES</th>
</tr>
</thead>
</table>
| 8.12 Hardware and software | • identify types of application software
 • use utility software and tools | • Application software
 • Off shelf software
 • Customized software
 • Open source software
 • System software Utility tools | • Discussing types of application software
 • Classifying of application software
 • Performing system optimisation | • Operating systems such as Linux, Windows, MAC OS
 • System utility tools such as Tuneup, Disk Defragmenter |
| 8.13 Application of Computer Science | • describe areas of computer applications | • Agriculture
 • Transport management
 • Health
 • Environmental management
 • Robotics | • Discussing different computer application areas
 • Conducting educational tours to business organizations | • Internet
 • GIS (Geographic Information system)
 • Print media
 • Health information systems |
| 8.14 Data Representation | • convert numbers from one base to another
 • convert keyboard characters to ASCII code
 • add binary numbers
 • subtract binary numbers | • Conversion of binary to denary and vice versa
 • Addition of binary numbers
 • Subtraction of binary numbers | • Converting numbers from one base to another
 • Converting keyboard characters to binary numbers using ASCII character codes
 • Adding and subtracting binary numbers | • ASCII Character Codes chart
 • Internet
 • Scientific calculator |
<table>
<thead>
<tr>
<th>SKILL/TOPIC</th>
<th>OBJECTIVES Learners should be able to:</th>
<th>CONTENT (KNOWLEDGE, SKILLS, ATTITUDES)</th>
<th>SUGGESTED LEARNING ACTIVITIES AND NOTES</th>
<th>SUGGESTED LEARNING RESOURCES</th>
</tr>
</thead>
</table>
| 8.15 Communication Networks and Internet Technologies | • describe data transmission modes
• explain characteristics of transmission media
• outline types of networks
• explain services offered by internet service providers | • Data transmission modes
- Duplex/full duplex
- Half duplex
- Simplex
• Data Transmission Media
- Twisted pair
- Coaxial
- Optic fibre
- Wireless
- Common media characteristics (Costs, Noise immunity, Size and scalability)
• Types of networks
- LAN
- WAN
- PAN
- MAN
• Internet Service Providers (ISP) | • Experimenting on data transmission modes and tabulating results
• Comparing the characteristics of transmission media
• Drawing network types
• Modelling types of networks
• Conducting educational tours to network service providers | • Internet
• Switches
• Routers
• Cables
• Computers
• Networking toolkit |
| 8.16 Security and Ethics (Unhu/Ubuntu) | • explain computer crime and its effects
• apply data protection measures
• explain the ethical issues that can arise from online activities | • Computer crime
• Data protection measures
- Passwords
- File permissions modes
• Computer Ethics | • Discussing computer crime and its effects
• Applying data protection measures
• Discussing the impact of unethical practices | • Anti-malware / anti-virus software
• Encryption software such as Bit Locker
• Application packages such as Nitro
• Internet
• Multimedia tutorials
• Social Networks |
| 8.17 System Analysis and Design | • explain areas of feasibility
• carry out a feasibility study | • Feasibility study
- Technical
- Economic
- Legal
- Operational
- Social | • Discussing the different areas of feasibility
• Conducting a feasibility study | • Research Instruments
• Case Study
• SDLC chart |
<table>
<thead>
<tr>
<th>SKILL/TOPIC</th>
<th>OBJECTIVES (LEARNERS SHOULD BE ABLE TO:)</th>
<th>CONTENT (KNOWLEDGE, SKILLS, ATTITUDES)</th>
<th>SUGGESTED LEARNING ACTIVITIES AND NOTES</th>
<th>SUGGESTED LEARNING RESOURCES</th>
</tr>
</thead>
</table>
| 8.18 Algorithm Design and Problem-solving | • explain selection and repetition constructs
• apply selection and repetition algorithm structures in problem solving | • Algorithm Tools
- Pseudo code structures
- Selection and repetition | • Discussing selection and repetition constructs
• Interpreting selection and repetition algorithms
• Solving problems using selection and repetition algorithm structures
• Dry running algorithms | • Algorithm charts
• Multimedia tutorials |
| 8.19 Programming | • develop programs that use pseudo code structures
• develop a program using functions
• test and debug programs | • Programming concepts
- Control structures
 o Repetition/iteration/loop
 o Selection
- Functions
- Testing and Debugging | • writing programs that use pseudo code structures
• Applying functions in solving problems
• Testing and debugging | • Programming tools such as VB.Net and Python
• Multimedia tutorials |
| 8.20 Databases | • develop databases using database objects and views
• edit database objects
• apply database security controls | • Database objects and views
- Datasheets
- Queries
- Forms
- Reports
- Data manipulation methods
- Database security | • Creating a database
• Performing database operations; Create, Read, Update and Delete (CRUD)
• Searching and filtering records
• Sorting records
• Generating reports
• Applying database security measures | • Database packages such as MS Access, MySQL
• Multimedia tutorials
• Expert Guests such as Database Administrator |
<table>
<thead>
<tr>
<th>SKILL/TOPIC</th>
<th>OBJECTIVES</th>
<th>CONTENT (KNOWLEDGE, SKILLS, ATTITUDES)</th>
<th>SUGGESTED LEARNING ACTIVITIES AND NOTES</th>
<th>SUGGESTED LEARNING RESOURCES</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.21 Web design</td>
<td>• use Content Management System (CMS) templates to create websites</td>
<td>• CMS Web site templates</td>
<td>• Designing websites using CMS web templates</td>
<td>• Graphics Software packages such as GIMP, Windows Picture Manager</td>
</tr>
<tr>
<td></td>
<td>• customize Websites</td>
<td>• Web content development</td>
<td>• Creating and uploading website content</td>
<td>• Web development tools such as Joomla, Notepad++</td>
</tr>
<tr>
<td></td>
<td>• generate content using Graphics design package</td>
<td>• Testing and Debugging</td>
<td>• Testing and debugging</td>
<td>• Web Browsers</td>
</tr>
<tr>
<td></td>
<td>• apply the concept of debugging and testing</td>
<td>• Plugins and Extensions</td>
<td>• Applying plugins and extensions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• use Plugins and extensions in web development</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.22 Technopreneurship</td>
<td>• describe the technopreneurship components</td>
<td>• Environmental technopreneurship components</td>
<td>• Discussing the uses of technopreneurship components</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Science parks</td>
<td>• Attending to ICT Exhibition Expos</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Incubation centres</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Academic institutions</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Research and development centres</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SKILL/TOPIC</td>
<td>OBJECTIVES Learners should be able to:</td>
<td>CONTENT (KNOWLEDGE, SKILLS, ATTITUDES)</td>
<td>SUGGESTED LEARNING ACTIVITIES AND NOTES</td>
<td>SUGGESTED LEARNING RESOURCES</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>---</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>
| 8.23 Hardware And Software | • identify the various applications of hardware devices
• compare different operating systems
• explain the functions of an operating system | • Hardware devices
- Applications of hardware devices such as Point Of Sale Terminal, ATM, Data Capturing System
- Operating systems
- Personal Computer (PC) Operating Systems
- Mobile Operating System; Android, Symbian, Windows | • Demonstrating the use of hardware devices
• Identifying different operating systems
• Discussing the functions of an operating system | • Operating systems such as Android, Symbian, Windows
• Mobile phones |
| 8.24 Application of Computer Science | • describe areas of computer applications | • Agriculture
• Computer aided manufacturing
• Intelligent systems
• Wildlife management
• Mining | • Distinguishing different computer applications
• Conducting educational tours to business organizations | • Internet
• Print media |
| 8.25 Data Representation | • outline units of storage
• convert denary numbers to octal and hexadecimal | • Units of storage
- Bit
- Nibble
- Byte
- Kilobyte
- Megabyte
- Terabyte
• Number bases
- Octal
- Hexadecimal | • Converting of denary to hexadecimal, octal and vice versa | • Print media
• Internet
• Scientific Calculator |
<table>
<thead>
<tr>
<th>SKILL/TOPIC</th>
<th>OBJECTIVES</th>
<th>CONTENT (KNOWLEDGE, SKILLS, ATTITUDES)</th>
<th>SUGGESTED LEARNING ACTIVITIES AND NOTES</th>
<th>SUGGESTED LEARNING RESOURCES</th>
</tr>
</thead>
</table>
| **8.26 Communication Networks And Internet Technologies** | **Learners should be able to:** | • Mobile technology
 - Mobile phones
 - Satellite
 - PDAs
 - Tablets
• Wireless technologies
 - WiFi,
 - WiMax,
 - Blue tooth,
 - Infrared
 - Microwave
 - Radio waves
• Cloud services | • Discussing the application of mobile technologies
• Discussing the application of wireless technologies
• Using cloud services such as uploading and downloading files | • Internet
• Cloud services such as Google Drive, One Drive, Drop Box
• Mobile devices |
| **8.27 Security And Ethics (Unhu/Ubuntu)** | **Learners should be able to:** | • Privacy
 • Data Integrity
 - Verification
 - Validation
 • System security
 • Cybercrime
 - Spoofing
 - Sniffing
 - Fraud
• Hacking | • Creating user accounts with different access levels
• Using verification techniques during data capturing
• Using validation techniques to validate data such as checksum, format check
• Configuring a firewall
• Protecting networks using proxy servers
• Discussing use of digital signature and certificates
• Discussing online crime | • Database package
• Validation tools
• Multimedia tutorials
• Utility tools
• Internet |
<table>
<thead>
<tr>
<th>SKILL/TOPIC</th>
<th>OBJECTIVES</th>
<th>CONTENT (KNOWLEDGE, SKILLS, ATTITUDES)</th>
<th>SUGGESTED LEARNING ACTIVITIES AND NOTES</th>
<th>SUGGESTED LEARNING RESOURCES</th>
</tr>
</thead>
</table>
| **8.28 System Analysis and Design** | • describe the activities involved in the analysis stage
• apply system analysis on projects
• describe the activities involved in the design stage
• design input, output and user interface for the project
• design file structures and tables
• construct system flow charts and pseudo codes
• explain activities involved in the development and testing stage | • Systems Analysis
 - Alternative solutions
 - Data Flow Diagrams (DFDs)
 - Activity diagram
• Systems Design
 - Input/ output design
 - User interface design
 - Database/ File design
 - System Flow Charts
 - Algorithm design
• Development & Testing
 - Coding
 - Testing | • Explaining the activities involved in systems analysis
• Conducting case studies on analysis (on small scale)
• Stating the activities in the design phase
• Illustrating design tools
• Conducting case studies on design stage
• Describing the development and testing phase
• Designing a testing strategy/plan for a given situation | Design tools
• CASE tools
• Analysis tools |
| **8.29 Algorithm Design And Problem-Solving** | • design flow charts
• construct pseudo codes
• use top down approach to represent an algorithm
• use trace tables to dry run algorithms
• correct errors in an algorithm | • Algorithm Tools
 - Flow chart
 - Pseudo code
 - Top down and bottom up design
• Interpreting and Testing Algorithms | • Creating flow charts
• Developing pseudo codes to solve problems
• Breaking down problem into sub-problems
• Dry running an algorithm
• Debugging algorithms | Algorithm charts
• Smart Draw
• MS Visio
• Trace table |
<table>
<thead>
<tr>
<th>SKILL/TOPIC</th>
<th>OBJECTIVES</th>
<th>CONTENT (KNOWLEDGE, SKILLS, ATTITUDES)</th>
<th>SUGGESTED LEARNING ACTIVITIES AND NOTES</th>
<th>SUGGESTED LEARNING RESOURCES</th>
</tr>
</thead>
</table>
| **8.30 Programming** | Learners should be able to:
• create user interfaces
• declare functions use objects in interface design
• test and debug programs
• identify types of errors
• apply error handling techniques in programming | • Interface design
• Visual Programming
- Functions
- Objects
• Testing and Debugging
• Errors | • Designing menus and sub menus
• Using functions in a program
• Choosing appropriate objects in interface design
• Testing and debugging programs
• Discussing types of errors
• Using error handling techniques | • Programming packages such as Python, VB, Java
• Expert Guests |
| **8.31 Databases** | Learners should be able to:
• create relational databases
• design forms and reports
• create queries
• import and export data
• apply database security | • Database objects and views
- Queries
- Forms
- Reports
• External data sources
• Database security | • Creating a relational database
• Generating forms, queries and reports
• Importing and Exporting data
• Using database security measures | • Database packages such as Microsoft access, oracle, MySQL |
| **8.32 Web Design** | Learners should be able to:
• use Content Management System (CMS) templates to create websites
• customize Websites
• generate content using Graphic design packages
• integrate web security in web designing | • Content management systems
- Web feeds
- Ads
• Graphic design
- Animations
- Videos
• Web security
- Cookies
- Developer tools
- Plugins/Extensions | • Design websites using CMS web templates
• Creating and uploading website content
• Using graphic design packages in web development
• Applying security measures in web designing
• Testing and debugging | • CMS such as Wordpress, Joomla, Drupal
• Graphics Design Packages such as Adobe Flash Photoshop
• Web development tools
• Browsers
• Expert Guests |
<table>
<thead>
<tr>
<th>SKILL/TOPIC</th>
<th>OBJECTIVES</th>
<th>CONTENT (KNOWLEDGE, SKILLS, ATTITUDES)</th>
<th>SUGGESTED LEARNING ACTIVITIES AND NOTES</th>
<th>SUGGESTED LEARNING RESOURCES</th>
</tr>
</thead>
</table>
| 8.33 Technopreneurship | • identify laws that govern technopreneurship
• describe the intellectual properties rights | • Laws and policies on technopreneurship
• Intellectual Property Rights
 - Patents
 - Copyrights | • Discussing the laws and policies of technopreneurship
• Describing the intellectual property rights | • Internet
• Electronic and print media
• Expert Guests |
<table>
<thead>
<tr>
<th>SKILL/TOPIC</th>
<th>OBJECTIVES</th>
<th>CONTENT</th>
<th>SUGGESTED LEARNING ACTIVITIES AND NOTES</th>
<th>SUGGESTED LEARNING RESOURCES</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.34 Hardware And Software</td>
<td>Learners should be able to: • replace malfunctioning components • troubleshoot and fix common software and hardware problems</td>
<td>• Hardware and software maintenance - Common Errors - Software - Keyboard - Mouse - Hard drive - Memory</td>
<td>• Maintaining hardware and software • Building a functional PC</td>
<td>• Hardware components • Software tool kit • Repair toolkit • Internet • Multimedia tutorials</td>
</tr>
<tr>
<td>8.35 Application Of Computer Science</td>
<td>• design models of Agricultural systems, Ambient systems and Geographic Information Systems</td>
<td>• Agriculture • Ambient systems • Geographic Information System</td>
<td>• Constructing models of given systems</td>
<td>• Hardware components • Software tool kit • Internet • Multimedia tutorials • Expert Guests</td>
</tr>
<tr>
<td>8.36 Data Representation</td>
<td>• represent logic gates using symbols • construct truth tables • model electronic circuits using logic gates</td>
<td>• Logic gates • Truth tables</td>
<td>• Drawing logic gates • Constructing truth tables using up to 3 inputs • Modelling logic circuits</td>
<td>• Internet • Circuit boards • Design tool kits</td>
</tr>
<tr>
<td>SKILL/TOPIC</td>
<td>OBJECTIVES</td>
<td>CONTENT (KNOWLEDGE, SKILLS, ATTITUDES)</td>
<td>SUGGESTED LEARNING ACTIVITIES AND NOTES</td>
<td>SUGGESTED LEARNING RESOURCES</td>
</tr>
<tr>
<td>-------------</td>
<td>------------</td>
<td>---------------------------------------</td>
<td>--</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>8.37 Communication Networks And Internet Technologies</td>
<td>Learners should be able to: explain network protocols, explain functions of the networking devices, design a network model, configure a network</td>
<td>Network protocols - Transmission Control Protocol/Internet Protocol (TCP/IP) - Open System Interconnection (OSI) - Networking devices - Hub - Router - Switch - Bridge - Modem</td>
<td>Discussing network protocols - Analyzing network traffic using protocol analyzers - Discussing functions of networking devices - Configuring a network model</td>
<td>Protocol analyzers such as Wireshark - Networking devices - Network tool kit - Internet</td>
</tr>
<tr>
<td>8.38 Security And Ethics (Unhu/Ubuntu)</td>
<td>backup files, formulate a recovery plan, use data recovery tools</td>
<td>Data Backup - Disaster recovery</td>
<td>Creating back up files - Creating a recovery plan - Using data recovery tools</td>
<td>Server/ PC - Cloud services such as Drop box, Google drive, One drive - Secondary storage media - Recovery tools such as Recuva</td>
</tr>
<tr>
<td>8.39 System Analysis And Design</td>
<td>describe the types of documentation and their contents, outline the importance of user training in carrying out a project, describe the activities involved in the implementation, evaluation and maintenance stages</td>
<td>Documentation - User Training - Implementation, Evaluation and Maintenance</td>
<td>Listing contents of user and technical documentation - Conducting case studies on documentation and user-training - Discussing implementation methods, evaluation techniques and the need for system maintenance</td>
<td>Print and electronic media - Project plan template</td>
</tr>
<tr>
<td>SKILL/TOPIC</td>
<td>OBJECTIVES</td>
<td>CONTENT (KNOWLEDGE, SKILLS, ATTITUDES)</td>
<td>SUGGESTED LEARNING ACTIVITIES AND NOTES</td>
<td>SUGGESTED LEARNING RESOURCES</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>--</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>8.40 Problem-Solving</td>
<td>Learners should be able to: design algorithms</td>
<td>• Algorithms Design</td>
<td>• Writing algorithms for the project</td>
<td>• Project Plan Template</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Multimedia Tutorials</td>
</tr>
<tr>
<td>8.41 Programming</td>
<td>• develop project code using programming concepts test and debug programs</td>
<td>• Coding programs • Testing and Debugging</td>
<td>• Writing code for project modules • Testing and debugging project modules</td>
<td>• Print and Electronic media • Programming tools • Internet</td>
</tr>
<tr>
<td>8.42 Database</td>
<td>• create queries based on multiple tables link database to project modules apply security measures to database</td>
<td>• Advanced Queries • Database connection • Database Security</td>
<td>• Performing database operations • Connecting database to project modules • Applying security measures on databases</td>
<td>• Database packages such as Microsoft Access, Oracle, MySQL</td>
</tr>
<tr>
<td>8.43 Web design</td>
<td>• develop Websites using web development tools apply security measures in web development test and debug a web application</td>
<td>• Web development • Web security • Testing and Debugging</td>
<td>• Designing and developing a website using security measures in web development • Testing and debugging a web application</td>
<td>• CMS such as Wordpress, Joomla, Drupal • Graphic Software such as Adobe Flash, Photoshop • Web development tools • Browsers • Multimedia tutorials</td>
</tr>
<tr>
<td>SKILL/TOPIC</td>
<td>OBJECTIVES</td>
<td>CONTENT (KNOWLEDGE, SKILLS, ATTITUDES)</td>
<td>SUGGESTED LEARNING ACTIVITIES AND NOTES</td>
<td>SUGGESTED LEARNING RESOURCES</td>
</tr>
<tr>
<td>---------------------</td>
<td>--</td>
<td>--</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>
| 8.44 Technopreneurship | • outline financial resource components
 • identify ideal conditions for business location | • Finance and funding
 • Market research | • Discussing finance and funding opportunities
 • Discussing ideal conditions for business location
 • Conducting market surveys | • Print and Electronic media
 • ICT Tools |
9.0 ASSESSMENT

In order to have a holistic assessment of the learner, learners will be assessed in the following three aspects; formative, continuous and summative assessment with each contributing to the learner’s final grade.

9.1 Assessment Objectives

(i) Knowledge and Understanding

Learners should be able to:

• describe a range of information processing systems
• explain the effects of introducing information processing systems both to individuals and to the organizations
• explain the functions of individual hardware and software components of ICT systems and their interrelationships

(ii) Problem Solving

Learners should be able to:

• use computers to generate, implement and document solutions appropriately
• demonstrate knowledge and understanding of the techniques used to solve real life problems
• analyze software programs in terms of data flow and system requirements
• analyze, evaluate, make reasoned judgments and present conclusions

(iii) Communication Skills

Learners should be able to:

• develop an understanding of the component parts of computer systems and how they inter-relate
• interpret and organize information
• recognize and present information in a variety of forms

(iv) Practical Skills

Learners should be able to:

• create computer based systems following the Systems Development Life Cycle (SDLC) model
• conduct research using the internet

9.2 Scheme of Assessment

The Scheme of Assessment is intended to encourage positive achievement by all learners. The subject will be examined in 5 papers as shown in the table below.

<table>
<thead>
<tr>
<th>Paper</th>
<th>Type of Paper</th>
<th>Duration</th>
<th>Weighting</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Multiple Choice</td>
<td>1 hour</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>Structured</td>
<td>2 hours</td>
<td>30</td>
</tr>
<tr>
<td>3</td>
<td>Practical Test</td>
<td>3 hours</td>
<td>40</td>
</tr>
<tr>
<td>4</td>
<td>SBA (School Based Assessment)</td>
<td>Coursework</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>Project</td>
<td>Project</td>
<td>10</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>100%</td>
</tr>
</tbody>
</table>
9.3 Specification Grid

(i) Content distribution

PAPER 1

<table>
<thead>
<tr>
<th>TOPIC</th>
<th>WEIGHTING (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardware and Software</td>
<td>10</td>
</tr>
<tr>
<td>Application of Computer Science</td>
<td>10</td>
</tr>
<tr>
<td>Data Representation</td>
<td>10</td>
</tr>
<tr>
<td>Communication Networks and Internet Technologies</td>
<td>10</td>
</tr>
<tr>
<td>Security and Ethics (Unhu /Ubuntu)</td>
<td>10</td>
</tr>
<tr>
<td>System Analysis and Design</td>
<td>10</td>
</tr>
<tr>
<td>Algorithm Design and Problem-solving</td>
<td>10</td>
</tr>
<tr>
<td>Programming</td>
<td>10</td>
</tr>
<tr>
<td>Databases</td>
<td>10</td>
</tr>
<tr>
<td>Web Design</td>
<td>5</td>
</tr>
<tr>
<td>Technopreneurship</td>
<td>5</td>
</tr>
<tr>
<td>TOTAL</td>
<td>100</td>
</tr>
</tbody>
</table>

PAPER 2

<table>
<thead>
<tr>
<th>SECTION</th>
<th>WEIGHTING (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardware and Software</td>
<td>10</td>
</tr>
<tr>
<td>Application of Computer Science</td>
<td>10</td>
</tr>
<tr>
<td>Data Representation</td>
<td>10</td>
</tr>
<tr>
<td>Communication Networks and Internet Technologies</td>
<td>15</td>
</tr>
<tr>
<td>Security and Ethics (Unhu/Ubuntu)</td>
<td>10</td>
</tr>
<tr>
<td>System Analysis and Design</td>
<td>10</td>
</tr>
<tr>
<td>Algorithm Design and Problem-solving</td>
<td>10</td>
</tr>
<tr>
<td>Programming</td>
<td>5</td>
</tr>
<tr>
<td>Database</td>
<td>5</td>
</tr>
<tr>
<td>Web Design</td>
<td>5</td>
</tr>
<tr>
<td>Databases</td>
<td>10</td>
</tr>
<tr>
<td>TOTAL</td>
<td>100</td>
</tr>
</tbody>
</table>

PAPER 3 Option A

<table>
<thead>
<tr>
<th>SECTION</th>
<th>WEIGHTING (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Programming</td>
<td>50</td>
</tr>
<tr>
<td>Databases</td>
<td>30</td>
</tr>
<tr>
<td>Web Design</td>
<td>20</td>
</tr>
<tr>
<td>TOTAL</td>
<td>100</td>
</tr>
</tbody>
</table>

PAPER 3 Option B

<table>
<thead>
<tr>
<th>SECTION</th>
<th>WEIGHTING (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardware and Software</td>
<td>30</td>
</tr>
<tr>
<td>Data Representation</td>
<td>10</td>
</tr>
<tr>
<td>Communication Networks and Internet Technologies</td>
<td>50</td>
</tr>
<tr>
<td>Technopreneurship</td>
<td>10</td>
</tr>
<tr>
<td>TOTAL</td>
<td>100</td>
</tr>
</tbody>
</table>

NB: The Paper is 100% practical skills
PAPER 4 (Continuous Assessment)

<table>
<thead>
<tr>
<th>Terms</th>
<th>Form 1</th>
<th>Form 2</th>
<th>Form 3</th>
<th>Form 4</th>
<th>Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory Assignments</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>Tests</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>Practical Assignments</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>TOTAL</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>25</td>
</tr>
</tbody>
</table>

NB: Continuous assessment will be made up of 10 assignments, 10 tests and 5 practical assignments. These will be covered in a period of 4 years. All assignments and tests will be marked out of 100.

(ii) Skills distribution

All internal and external theoretical assessments shall be 40% knowledge and understanding plus 60% problem solving.

All internal and external practical assessments shall be 100% practical skills.

9.4 Grade Descriptors

The scheme of assessment is intended to encourage positive achievement by all learners. Grade descriptors are therefore provided for pass grades A, B and C to give a general indication of the standards of achievement expected of learners awarded particular grades. The descriptors must be interpreted in relation to the content specified by the Computer Science syllabus but are not designed to define that content. The grade awarded will depend in practice on the extent to which the learner has met the overall assessment objectives.

<table>
<thead>
<tr>
<th>Grade</th>
<th>Descriptor</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1. Manage files proficiently including sorting, searching and folder creation.</td>
</tr>
<tr>
<td></td>
<td>2. Formulate appropriate solutions to identified problems using Visual Basic and Database</td>
</tr>
<tr>
<td></td>
<td>3. Demonstrate an ability to analyze a problem, identify and define the computing requirements appropriate to its solution.</td>
</tr>
<tr>
<td></td>
<td>4. An ability to apply mathematical foundations, algorithmic principles, and computer science theory in the modeling and design of computer-based systems in a way that demonstrates comprehension of the tradeoffs involved in design choices.</td>
</tr>
<tr>
<td></td>
<td>5. Demonstrate a thorough understanding of the contents and use of system documentation</td>
</tr>
<tr>
<td></td>
<td>6. Demonstrate an in depth understanding of the use of computers in communication and the role played by networks in enhancing communication.</td>
</tr>
<tr>
<td></td>
<td>7. An ability to apply design and development principles in the construction of software systems of varying complexity.</td>
</tr>
<tr>
<td></td>
<td>8. Analyze all the stages of systems development life cycle and evaluate situations and come up with distinguished solutions using system development tools.</td>
</tr>
<tr>
<td></td>
<td>9. Evaluate situations and come up with distinguished solutions using system development tools.</td>
</tr>
<tr>
<td></td>
<td>10. Present the usability code with annotations, comments and error handling techniques.</td>
</tr>
<tr>
<td></td>
<td>11. An understanding of professional, ethical, legal, security and social issues.</td>
</tr>
<tr>
<td></td>
<td>12. Apply ERDs to solve given problems and interpret the ERDs inclusive of cardinalities in the description</td>
</tr>
<tr>
<td></td>
<td>13. Use characteristics of VB programming in the code (inheritance, polymorphism and encapsulation).</td>
</tr>
<tr>
<td></td>
<td>14. Solve problems using logic gates.</td>
</tr>
<tr>
<td></td>
<td>15. Use algorithms to solve problems.</td>
</tr>
<tr>
<td>Grade</td>
<td>Descriptor</td>
</tr>
<tr>
<td>-------</td>
<td>------------</td>
</tr>
</tbody>
</table>
| B | 1. Formulate solutions to identified problems.
 2. Analyze a given problem solution.
 3. Understand the contents and use of system documentation.
 4. Demonstrate an understanding of the use of computers in communication and the role played by networks in enhancing communication.
 5. Explain all the stages of systems development life cycle.
 6. Show an understanding of professional, ethical, legal, security and social issues.
 7. Assess situations and come up with solutions using system development tools.
 8. Draw and label ERDs and explain the flow of data in the system.
 9. Calculate binary numbers.
 10. Explain characteristics of VB (inherence, polymorphism and encapsulation).
 11. Code but without the element of error handling.
 12. Explain searching and sorting techniques.
 13. Draw and interpret logic gates.
 14. Write and dry run algorithms |
| C | 1. Explain situations using system development tools.
 2. Draw and label ERDs to solve given problems.
 3. Convert binary numbers.
 4. Distinguish between static and dynamic data structures.
 5. State characteristics of VB (inherence, polymorphism and encapsulation).
 6. Code but with some bugs (errors) in the code.
 7. Identify searching and sorting techniques.
 8. Draw logic gates.
 9. Dry run algorithms.
 10. Understand the basic use of computers in communication and the role played by networks in enhancing communication.
 11. Understand networking configuration.
 12. List all the stages of systems development life cycle.
 13. Show an understanding of professional, ethical, legal, security and social issues |

9.5 Paper Descriptions

Paper 1: Theory (40 Marks)

The paper consists of **40 compulsory multiple choice items**.

Paper 2: Theory (100 Marks)

The paper consists of 10 – 12 structured questions and the candidates are required to **answer ALL questions** in spaces provided.

Paper 3 Option A: Practical Exam (100 marks)

The paper comprises **practical questions** on Databases, Web Design and Programming.

Paper 3 Option B: Practical Exam (100 marks)

The paper comprises practical questions on Hardware and Software, Data Representation, Communication and Internet Technologies and Technopreneurship. Prerrelease material will be published before the end of term 1 form 4.

Paper 4: School Based Assessment (Coursework - 100 %)

Coursework is made up of **10 Assignments, 10 Tests and 5 Practical Assignments** set, marked and recorded internally by the teachers. The internal tests are spaced equitably from the beginning of term two in Form One up to the end of term two in Form Four. The tests shall be marked out of **100 Marks**. Each test and the marking guidance used shall be filed together with the record of marks. These will be sent to ZIMSEC together with the project file.
Pre-release materials will be made available to examination Centres at the beginning of Term One of Form Four. Examination Centres are advised to encourage their candidates to develop solutions to tasks using a high-level programming language, such as Visual Basic or Python. The purpose of the pre-release material tasks is to direct candidates to some of the topics which will be examined in Paper 5. The exam questions will require candidates to have practical programming experience including writing their own programs, executing (running), testing and debugging them. Knowledge of programming language syntax will not be examined in this project report. The higher ability candidates are to be encouraged to extend their practical programming beyond the scope of these tasks.

10.0 GLOSSARY/ APPENDICES

APPENDIX I: GLOSSARY OF TERMS

It is hoped that the glossary will be helpful to learners as a guide. The glossary has been deliberately kept brief not only with respect to the number of terms included but also to the descriptions of their meanings. Learners should appreciate that the meaning of a term must depend in part on its context.

<table>
<thead>
<tr>
<th>Define</th>
<th>is intended literally for only a formal statement or equivalent paraphrases being required.</th>
</tr>
</thead>
<tbody>
<tr>
<td>State</td>
<td>implies a concise answer with little or no supporting argument e.g. numerical answer that can readily be obtained by inspection.</td>
</tr>
<tr>
<td>List</td>
<td>requires a number of points generally each of one word with no elaboration, where a number of points is specified this should not be exceeded.</td>
</tr>
<tr>
<td>Explain</td>
<td>may imply reasoning or some reference to theory depending on the context.</td>
</tr>
<tr>
<td>Describe</td>
<td>requires the candidate to state in words (using diagrams where appropriate) the main points of the concept.</td>
</tr>
<tr>
<td>Outline</td>
<td>implies brevity that is restricting the answer to given essentials.</td>
</tr>
<tr>
<td>Predict/deduce</td>
<td>the candidate is expected to produce the expected answer by making a logical connection between other pieces of information.</td>
</tr>
<tr>
<td>Suggest</td>
<td>it is used in two main contexts that is either to imply that there is no unique answer or to imply that learners are expected to apply their general knowledge.</td>
</tr>
<tr>
<td>Find</td>
<td>is a general term that may alternatively be interpreted as calculate, measure, determine etc.</td>
</tr>
<tr>
<td>Determine</td>
<td>often implies that the quantity concerned cannot be measured directly but is obtained by calculation.</td>
</tr>
</tbody>
</table>
APPENDIX II: ACRONYMS

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASCII</td>
<td>American Standard Code for Information Interchange</td>
</tr>
<tr>
<td>ATM</td>
<td>Automated Teller Machine</td>
</tr>
<tr>
<td>CMS</td>
<td>Content Management System</td>
</tr>
<tr>
<td>CRUD</td>
<td>Create, Retrieve, Update, Delete</td>
</tr>
<tr>
<td>CZI</td>
<td>Consumer Council in Zimbabwe</td>
</tr>
<tr>
<td>DFD</td>
<td>Data Flow Diagram</td>
</tr>
<tr>
<td>HTML</td>
<td>Hyper Text Markup Language</td>
</tr>
<tr>
<td>ICT</td>
<td>Information and Communication Technology</td>
</tr>
<tr>
<td>Internet</td>
<td>International Network</td>
</tr>
<tr>
<td>ISP</td>
<td>Internet Service Provider</td>
</tr>
<tr>
<td>LAN</td>
<td>Local Area Network</td>
</tr>
<tr>
<td>MAN</td>
<td>Metropolitan Area Network</td>
</tr>
<tr>
<td>OSI</td>
<td>Open System Interconnection</td>
</tr>
<tr>
<td>PAN</td>
<td>Personal Area Network</td>
</tr>
<tr>
<td>PC</td>
<td>Personal Computer</td>
</tr>
<tr>
<td>PDA</td>
<td>Personal Digital Assistant</td>
</tr>
<tr>
<td>SDLC</td>
<td>Systems Development Life Cycle</td>
</tr>
<tr>
<td>TCP/IP</td>
<td>Transmission Control Protocol/Internet Protocol</td>
</tr>
<tr>
<td>URL</td>
<td>Uniform Resource Locator</td>
</tr>
<tr>
<td>WAN</td>
<td>Wide Area Network</td>
</tr>
<tr>
<td>WiFi</td>
<td>Wireless Fidelity</td>
</tr>
<tr>
<td>WiMax</td>
<td>World Wide Interoperability for Microwave Access</td>
</tr>
</tbody>
</table>

APPENDIX III: PRACTICAL ASSESSMENT GUIDELINES

Computer Science is a practical subject and a range of practical exercises should complement the study of the practical parts of the syllabus. It is recommended that learners should be exposed to four practical lessons per week. It is also recommended that the maximum computer-pupil ratio be 1:2. In cases where computers are inadequate, teachers are encouraged to group the learners into manageable group sizes. Where possible, machines should be loaded with integrated packages to facilitate easy importing and exporting of documents.

Practical Examination
The practical examination session should be invigilated by the Computer Science teacher(s) and another from any department. The Computer Science teacher is meant to support learners ONLY in terms of software and hardware challenges during the examination. The practical examination is marked by the Computer Science teacher at the school. The marks are submitted to ZIMSEC at a prescribed time for moderation. ZIMSEC will monitor the administration of the practical examination at sampled schools.

Practical Project
Candidates are expected to carry out pieces of work using database package and programming languages. During Form 4 Terms 1, 2 and 3, the candidates must develop an application using a high level programming language from a given scenario based on a relational database. The piece of work must be dated and contain school and candidate details. The pieces of work must be filed in a flat file containing not more than 40 pages. The file MUST be marked by the teacher. The files and the practical examination marks must be submitted to ZIMSEC together with scripts for Paper 2 through the normal packaging and channel.

APPENDIX IV: RESOURCES AND EQUIPMENT

Infrastructure and Equipment

For a school to run the Computer Science Syllabus for examination purposes, the under listed infrastructure and equipment need to be in place
Computer Laboratory

Personal Computers to accommodate at most 2 students per computer
A printer
Computer Desks and Chairs to accommodate the number of students
Dustless Displays for the Teacher (securely-mounted Whiteboard, LCD projector)
Computer Repair Toolkit
Back-up generator

Theory Classroom

Classroom furniture to accommodate the students
Writing Surface for the Teacher (e.g. securely-mounted Whiteboard, LCD projector)

In both the above cases, there should be adequate lighting and ventilation.

NB: Networked computers and internet connectivity will be an added advantage

Adequately licensed computer software should be available for training purposes – especially the under-listed:
• Spreadsheet
• Database
• Word-Processing
• Presentation
• Operating System
• Programming Language Software
• Antivirus Software

APPENDIX V: SUGGESTED REFERENCE BOOKS

It should be noted that specifying a limited list of textbooks is difficult as new titles are being availed all the time. Teachers are therefore encouraged to consult other books in order to adequately cover the whole syllabus. However, below is a suggested book list which serves the purpose of being a reference guide.

• British Computer Society (2005), The BCS Glossary ICT and Computer Terms, McMillan, UK
• Brown, G and D Watson (2010), IGCSE ICT, Hodder Education, UK
• French, C. S (1996), Data Processing and ICT 5th edition, Thompson, UK
• Lead Better & Wain Wright (2004), IGCSE Computer Studies and IT, Cambridge University Press, UK
• Nowel Kalicharan (1998), An Introduction to Computer Studies, Cambridge University Press, UK
• Roderick, T & Rushbrook, G (2002), ICT for GCSE, Oxford University Press, UK
• Taylor, G. (1991), GCSE Computer Studies and Information Technology, McMillan, UK